LXD and Docker are quite popular container management tools that efficiently manage containers to develop and run applications. Although they seem to be similar, they have many differences in many aspects. Do you want to know the differences between LXD and Docker and which one is better? No doubt you are at the right blog post. This blog will uncover more about LXD and Docker. We have compared the tools from every angle that will help you to understand them deeply and choose the right one for you. Let’s dive in!
Businesses are getting too complex nowadays because of their dynamic nature and scaling requirements. It's a simple but important note that you must choose smart tools to simplify complex processes. Software development with the right tools will result in quick delivery and deployment.
On that note, this blog compares LXD and Docker in terms of their features, pros and cons, similarities, and differences. It will help developers or operation engineers choose the right one for developing and managing their applications. Know that LXD and Docker are widely used as containerization tools that effectively manage containers for isolating applications, simplifying development processes, and providing robust security. Simply put, you can securely develop, run, control, and scale applications with these container management tools. Let’s start now!
If you want to enrich your career and become a professional in Docker, then enroll in "Docker Training". This course will help you to achieve excellence in this domain. |
LXD is nothing but an open-source Linux Container Hypervisor. With LXD, you can create system containers and Virtual Machines. In a way, LXD is the container management extension for Linux Containers – LXC. It uses LXC for running system containers. Actually, LXC divides systems into independent containers. At the same time, LXD acts as an interface to manage the containers. Note that a single container can run many applications.
Know that LXD is written in Go programming, and you can get the source code of LXD on GitHub. Also, LXD is image-based and offers many Linux distributions. LXD offers a template distribution system to create containers and operate them efficiently. With a single command, you can manage instances in system containers. Overall, LXD supports fine-grained control over applications and ensures high-scale operational security.
The following features of LXD will let you know why it is being used as one of the effective container management tools.
1. Storage: Generally, LXD stores data in storage pools. These storage pools are further divided into storage volumes based on different content types. With LXD, you can easily create any number of storage pools. Here, storage volumes are nothing but the parts of storage pools. Know that each storage volume can be used for a specific purpose. There are three types of storage volumes such as container/virtual machine, custom, and image. Besides, storage pools have storage buckets like Amazon S3.
2. Images: LXD has an in-built image store. It supports importing images from three sources: remote image server, file on a remote server, and direct pushing of the image files. LXD supports two image formats such as unified tarball and split tarball. Unified tarball uses a single file consisting of an instance root and the required metadata. On the contrary, split tarball uses two files where one file contains an instance root, and another file consists of the metadata.
3. Networking: LXD supports network types such as bridge network and OVN network. In the bridge network type, LXD creates a virtual L2 Ethernet in which you can connect instance NICs. A network device, NIC, is the short form of a Network Interface Card. Another one, the OVN network, is a software-defined networking system. It supports virtual network abstraction and building private clouds. Additionally, LXD supports external networks such as the Macvlan network, physical network, and SR-IOV network.
4. REST APIs: REST API is known as Representational State Transfer Application Programming Interface. REST API communicates with LXC through the libLXC library. Also, this API helps communicate between LXD and clients over HTTPS. The data is encapsulated over a Unix socket for local operations and SSL for remote operations. Note that REST APIs have to return status information. For this, LXD uses three standard return types: background operation, standard return value, and error.
If you are still wondering why LXD is one of the powerful containerization tools, the following advantages of LXD make you clear:
Every coin has two sides. Likewise, every tool comes with pluses and minuses. No doubt LXD has a few shortcomings too. Let's see them below:
Docker is one of the end-to-end and lightweight containerized platforms used to build, run, and share applications. Mainly, Docker allows applications to run on loosely-coupled environments known as containers. You can run applications in different containers, which will help to reduce the conflict between languages, frameworks, and binaries. With Docker, you can manage applications throughout their development lifecycle – no matter the size of the application. In short, you can build portable, fast, reliable applications by replacing mundane configuration tasks with Docker.
You can get Docker images from the Docker Hub repository. And you can use Docker images to develop applications on any platform – no matter whether it is a Desktop or Cloud. For example, you can run Docker in AWS ECS, Google GKE, Azure ACI, etc. Not only this, you can share applications across different platforms and environments. Docker is the best tool for developing stateless and microservices applications since it isolates applications effectively.
Administrators, Developers, and DevOps professionals use Docker for managing applications. Companies from mid-size to enterprises use Docker widely. Especially software development and IT companies widely use Docker. For example, JPMorgan, ThoughtWorks, Neudesic, SLALOM, and LLC use Docker extensively.
[ Related Article: Introduction to DevOps Docker ]
There are a lot of features that make Docker one of the popular container management tools. Let’s discuss them below:
1. Docker Desktop: you can quickly install Docker Desktop on Windows and macOS desktops. Docker Desktop consists of Docker Engine, Docker content trust, Docker Compose, Docker CLI Client, and many more. Docker Desktop allows a simple interface to manage your machine's containers, applications, and images. Note that it can be done without using CLI. With Docker Desktop, you can build and share containerized applications. Moreover, Docker Desktop interacts with the Docker Hub and uses the images and templates to simplify the application development process.
[ Check out: Installing Docker on Windows and Mac ]
2. Docker Build: This tool helps build portable container images. In other words, you can create images for multiple operating systems. This tool also supports bundle images and sharing them anywhere – even with Docker Hub. You can use suitable build drivers to make builds and optimise them through effective cache management. Besides, you can customize, automate, and extend the builds seamlessly.
3. Docker Dashboard: Docker provides a quick view of containers running on a machine. It will help interact with containers and manage them effectively. It provides a quick view of container logs. So, you can easily manage container lifecycles, such as stopping or removing containers. Additionally, the dashboard provides ‘images view’ that displays the list of Docker images. You can view scanning reports of images in the dashboard, from which you can know the vulnerabilities in the images. Also, you can see the list of images shared with the Docker hub. What's more! ‘volumes view’ helps to see the list of volumes, which will support creating and deleting volumes quickly.
4. Docker Hub: It is one of the container image repositories. Here, we can find certified images and use them. You can pull high-quality images provided by vendors and Docker from this repository. Not just that, you can publish your own images in Docker Hub. Docker Hub comes with both private and public repositories. You can pull and push container images in private repositories when considering private repositories. Docker allows building images in GitHub and pushing them into the Docker Hub. As a whole, we can build, collaborate, and integrate using Docker Hub.
5. Docker Compose V2: Know that Docker comes with many developer tools. The tools help to build, run, and share applications efficiently. Mainly, Compose V2 helps to build multi-container applications and speeds up the development process. In other words, it helps to develop applications in a short development cycle. Further, Compose V2 simplifies cloud deployment.
No wonder Docker has many advantages, like LXD. Let’s get to that:
[ Check out: Docker Deployment Tools ]
Undeniably, where there are pros, there can also be a few cons. Let’s now look at the cons of Docker:
Some similarities exist between LXD and Docker. Let’s have a look at the following:
Many differences exist between LXD and Docker. The following will talk through the same in detail.
[ Also Check out Vagrant vs Docker ]
It’s a short but important note that LXD is a fast, secure, lightweight, full operating system container management tool. As you know, Docker is a lightweight container management platform suitable for container isolation, running microservices and stateless applications, and much more. It's no wonder you can run Docker inside LXD containers. But the ultimate question is - which one is better? The answer is that it depends on the requirements. This is because LXD is good in certain features, whereas Docker is good in certain features. Thus, the selection of the right tool must be made based on the requirements of the applications.
Our work-support plans provide precise options as per your project tasks. Whether you are a newbie or an experienced professional seeking assistance in completing project tasks, we are here with the following plans to meet your custom needs:
Name | Dates | |
---|---|---|
Docker Training | Dec 24 to Jan 08 | View Details |
Docker Training | Dec 28 to Jan 12 | View Details |
Docker Training | Dec 31 to Jan 15 | View Details |
Docker Training | Jan 04 to Jan 19 | View Details |
Viswanath is a passionate content writer of Mindmajix. He has expertise in Trending Domains like Data Science, Artificial Intelligence, Machine Learning, Blockchain, etc. His articles help the learners to get insights about the Domain. You can reach him on Linkedin